8/23/2015

wAeTIN FowLee

Intro Videos Desigh* Agile Refactoring NoSQL DSL, Contintious Delivery Microservices Photos* About Me

N Y

Is Design Dead?

For many that come briefly into contact with Extreme Programming, it seems that XP calls
for the death of software design. Not just is much design activity ridiculed as "Big Up Front
Design", but such design techniques as the UML, flexible frameworks, and even patterns
are de-emphasized or downright ignored. In fact XP involves a lot of design, but does it in
a different way than established software processes. XP has rejuvenated the notion of
evolutionary design with practices that allow evolution to become a viable design strategy.
It also provides new challenges and skills as designers need to learn how to do a simple

Is Design Dead?

design, how to use refactoring to keep a design clean, and how to use patterns in an

evolutionary style.

May 2004

Martin Fowler

Translations: Japanese - Russian -
Traditional Chinese - Spanish -
Korean - Portuguese - Belorussian -
Simplified Chinese - French -
Vietnamese - Ukrainian - Ukrainian -
Czech - Croatian - Polish -

Find similar articles to this by looking
at these tags: popular - design - agile -
extreme programming - evolutionary
design

(This paper was written for my keynote at
XP 2000 conference and its original form
was published as part of the proceedings.)

Contents

Planned and Evolutionary Design
The Enabling Practices of XP

The Value of Simplicity

What on Earth is Simplicity Anyway
Does Refactoring Violate YAGNI?
Patterns and XP

Growing an Architecture

UML and XP

On Metaphor

Do you wanna be an Architect when you grow up?
Reversibility

The Will to Design

Things that are difficult to refactor in
Is Design Happening?

So is Design Dead?

Extreme Programming (XP) challenges many of the common assumptions about software
development. Of these one of the most controversial is its rejection of significant effort in
up-front design, in favor of a more evolutionary approach. To its detractors this is a return
to "code and fix" development - usually derided as hacking. To its fans it is often seen as a

rejection of design techniques (such as the UML), principles and patterns. Don't worry
about design, if you listen to your code a good design will appear.

| find myself at the center of this argument. Much of my career has involved graphical
design languages - the Unified Modeling Language (UML) and its forerunners - and in

patterns. Indeed I've written books on both the UML and patterns. Does my embrace of
XP mean | recant all of what I've written on these subjects, cleansing my mind of all such

counter-revolutionary notions?

http://martinfowler.com/articles/designDead.html

116

8/23/2015 Is Design Dead?

Well I'm not going to expect that | can leave you dangling on the hook of dramatic tension.
The short answer is no. The long answer is the rest of this paper.

Planned and Evolutionary Design

For this paper I'm going to describe two styles how design is done in software
development. Perhaps the most common is evolutionary design. Essentially evolutionary
design means that the design of the system grows as the system is implemented. Design
is part of the programming processes and as the program evolves the design changes.

In its common usage, evolutionary design is a disaster. The design ends up being the
aggregation of a bunch of ad-hoc tactical decisions, each of which makes the code harder
to alter. In many ways you might argue this is no design, certainly it usually leads to a poor
design. As Kent puts it, design is there to enable you to keep changing the software easily
in the long term. As design deteriorates, so does your ability to make changes effectively.
You have the state of software entropy, over time the design gets worse and worse. Not
only does this make the software harder to change, it also makes bugs both easier to
breed and harder to find and safely kill. This is the "code and fix" nightmare, where the
bugs become exponentially more expensive to fix as the project goes on.

Planned Design is a counter to this, and contains a notion born from other branches of
engineering. If you want to build a doghouse, you can just get some wood together and
get a rough shape. However if you want to build a skyscraper, you can't work that way -
it'll just collapse before you even get half way up. So you begin with engineering drawings,
done in an engineering office like the one my wife works at in downtown Boston. As she
does the design she figures out all the issues, partly by mathematical analysis, but mostly
by using building codes. Building codes are rules about how you design structures based
on experience of what works (and some underlying math). Once the design is done, then
her engineering company can hand the design off to another company that builds it.

Planned design in software should work the same way. Designers think out the big issues
in advance. They don't need to write code because they aren't building the software, they
are designing it. So they can use a design technique like the UML that gets away from
some of the details of programming and allows the designers to work at a more abstract
level. Once the design is done they can hand it off to a separate group (or even a
separate company) to build. Since the designers are thinking on a larger scale, they can
avoid the series of tactical decisions that lead to software entropy. The programmers can
follow the direction of the design and, providing they follow the design, have a well built
system

Now the planned design approach has been around since the 70s, and lots of people
have used it. It is better in many ways than code and fix evolutionary design. But it has
some faults. The first fault is that it's impossible to think through all the issues that you
need to deal with when you are programming. So it's inevitable that when programming
you will find things that question the design. However if the designers are done, moved
onto another project, what happens? The programmers start coding around the design
and entropy sets in. Even if the designer isn't gone, it takes time to sort out the design
issues, change the drawings, and then alter the code. There's usually a quicker fix and
time pressure. Hence entropy (again).

Furthermore there's often a cultural problem. Designers are made designers due to sKill

http://martinfowler.com/articles/designDead.html 2/16

8/23/2015 Is Design Dead?

and experience, but they are so busy working on designs they don't get much time to code
any more. However the tools and materials of software development change at a rapid
rate. When you no longer code not just can you miss out on changes that occur with this
technological flux, you also lose the respect of those who do code.

This tension between builders and designers happens in building too, but it's more intense
in software. It's intense because there is a key difference. In building there is a clearer
division in skills between those who design and those who build, but in software that's less
the case. Any programmer working in high design environments needs to be very skilled.
Skilled enough to question the designer's designs, especially when the designer is less
knowledgeable about the day to day realities of the development platform.

Now these issues could be fixed. Maybe we can deal with the human tension. Maybe we
can get designers skillful enough to deal with most issues and have a process disciplined
enough to change the drawings. There's still another problem: changing requirements.
Changing requirements are the number one big issue that causes headaches in software
projects that | run into.

One way to deal with changing requirements is to build flexibility into the design so that
you can easily change it as the requirements change. However this requires insight into
what kind of changes you expect. A design can be planned to deal with areas of volatility,
but while that will help for foreseen requirements changes, it won't help (and can hurt) for
unforeseen changes. So you have to understand the requirements well enough to
separate the volatile areas, and my observation is that this is very hard.

Now some of these requirements problems are due to not understanding requirements
clearly enough. So a lot of people focus on requirements engineering processes to get
better requirements in the hope that this will prevent the need to change the design later
on. But even this direction is one that may not lead to a cure. Many unforeseen
requirements changes occur due to changes in the business. Those can't be prevented,
however careful your requirements engineering process.

So all this makes planned design sound impossible. Certainly they are big challenges. But
I'm not inclined to claim that planned design is worse than evolutionary design as it is most
commonly practiced in a "code and fix" manner. Indeed | prefer planned design to "code
and fix". However I'm aware of the problems of planned design and am seeking a new
direction.

The Enabling Practices of XP

XP is controversial for many reasons, but one of the key red flags in XP is that it
advocates evolutionary design rather than planned design. As we know, evolutionary
design can't possibly work due to ad hoc design decisions and software entropy.

At the core of understanding this argument is the software change curve. The change
curve says that as the project runs, it becomes exponentially more expensive to make
changes. The change curve is usually expressed in terms of phases "a change made in
analysis for $1 would cost thousands to fix in production”. This is ironic as most projects
still work in an ad-hoc process that doesn't have an analysis phase, but the exponentiation
is still there. The exponential change curve means that evolutionary design cannot
possibly work. It also conveys why planned design must be done carefully because any

http://martinfowler.com/articles/designDead.html 3/16

8/23/2015 Is Design Dead?
mistakes in planned design face the same exponentiation.

The fundamental assumption underlying XP is that it is possible to flatten the change
curve enough to make evolutionary design work. This flattening is both enabled by XP and
exploited by XP. This is part of the coupling of the XP practices: specifically you can't do
those parts of XP that exploit the flattened curve without doing those things that enable
the flattening. This is a common source of the controversy over XP. Many people criticize
the exploitation without understanding the enabling. Often the criticisms stem from critics'
own experience where they didn't do the enabling practices that allow the exploiting
practices to work. As a result they got burned and when they see XP they remember the
fire.

There are many parts to the enabling practices. At the core are the practices of Testing,
and Continuous Integration. Without the safety provided by testing the rest of XP would be
impossible. Continuous Integration is necessary to keep the team in sync, so that you can
make a change and not be worried about integrating it with other people. Together these
practices can have a big effect on the change curve. | was reminded of this again here at
ThoughtWorks. Introducing testing and continuous integration had a marked improvement
on the development effort. Certainly enough to seriously question the XP assertion that
you need all the practices to get a big improvement.

Refactoring has a similar effect. People who refactor their code in the disciplined manner
suggested by XP find a significant difference in their effectiveness compared to doing
looser, more ad-hoc restructuring. That was certainly my experience once Kent had taught
me to refactor properly. After all, only such a strong change would have motivated me to
write a whole book about it.

Jim Highsmith, in his excellent summary of XP, uses the analogy of a set of scales. In one
tray is planned design, the other is refactoring. In more traditional approaches planned
design dominates because the assumption is that you can't change your mind later. As the
cost of change lowers then you can do more of your design later as refactoring. Planned
design does not go away completely, but there is now a balance of two design
approaches to work with. For me it feels like that before refactoring | was doing all my
design one-handed.

These enabling practices of continuous integration, testing, and refactoring, provide a new
environment that makes evolutionary design plausible. However one thing we haven't yet
figured out is where the balance point is. I'm sure that, despite the outside impression, XP
isn't just test, code, and refactor. There is room for designing before coding. Some of this
is before there is any coding, most of it occurs in the iterations before coding for a
particular task. But there is a new balance between up-front design and refactoring.

The Value of Simplicity

Two of the greatest rallying cries in XP are the slogans "Do the Simplest Thing that Could
Possibly Work" and "You Aren't Going to Need It" (known as YAGNI). Both are
manifestations of the XP practice of Simple Design.

The way YAGNI is usually described, it says that you shouldn't add any code today which
will only be used by feature that is needed tomorrow. On the face of it this sounds simple.
The issue comes with such things as frameworks, reusable components, and flexible

http://martinfowler.com/articles/designDead.html 4/16

8/23/2015 Is Design Dead?

design. Such things are complicated to build. You pay an extra up-front cost to build them,
in the expectation that you will gain back that cost later. This idea of building flexibility up-
front is seen as a key part of effective software design.

However XP's advice is that you not build flexible components and frameworks for the first
case that needs that functionality. Let these structures grow as they are needed. If | want
a Money class today that handles addition but not multiplication then | build only addition
into the Money class. Even if I'm sure I'll need multiplication in the next iteration, and
understand how to do it easily, and think it'll be really quick to do, I'll still leave it till that
next iteration.

One reason for this is economic. If | have to do any work that's only used for a feature
that's needed tomorrow, that means | lose effort from features that need to be done for
this iteration. The release plan says what needs to be worked on now, working on other
things in the future is contrary to the developers agreement with the customer. There is a
risk that this iteration's stories might not get done. Even if this iteration's stories are not at
risk it's up to the customer to decide what extra work should be done - and that might still
not involve multiplication.

This economic disincentive is compounded by the chance that we may not get it right.
However certain we may be about how this function works, we can still get it wrong -
especially since we don't have detailed requirements yet. Working on the wrong solution
early is even more wasteful than working on the right solution early. And the XPerts
generally believe that we are much more likely to be wrong than right (and | agree with
that sentiment.)

The second reason for simple design is that a complex design is more difficult to
understand than a simple design. Therefore any modification of the system is made
harder by added complexity. This adds a cost during the period between when the more
complicated design was added and when it was needed.

Now this advice strikes a lot of people as nonsense, and they are right to think that. Right
providing that you imagine the usual development world where the enabling practices of

XP aren't in place. However when the balance between planned and evolutionary design
alters, then YAGNI becomes good practice (and only then).

So to summarize. You don't want to spend effort adding new capability that won't be
needed until a future iteration. And even if the cost is zero, you still don't want to add it
because it increases the cost of modification even if it costs nothing to put in. However
you can only sensibly behave this way when you are using XP, or a similar technique that
lowers the cost of change.

What on Earth is Simplicity Anyway

So we want our code to be as simple as possible. That doesn't sound like that's too hard
to argue for, after all who wants to be complicated? But of course this begs the question
"what is simple?"

In XPE Kent gives four criteria for a simple system. In order (most important first):

= Runs all the Tests
= No duplication

http://martinfowler.com/articles/designDead.html 5/16

8/23/2015 Is Design Dead?

= Reveals all the intention
= Fewest number of classes or methods

Running all the tests is a pretty simple criterion. No duplication is also pretty
straightforward, although a lot of developers need guidance on how to achieve it. The
tricky one has to do with revealing the intention. What exactly does that mean?

The basic value here is clarity of code. XP places a high value on code that is easily read.
In XP "clever code" is a term of abuse. But some people's intention revealing code is
another's cleverness.

In his XP 2000 paper, Josh Kerievsky points out a good example of this. He looks at
possibly the most public XP code of all - JUnit. JUnit uses decorators to add optional
functionality to test cases, such things as concurrency synchronization and batch set up
code. By separating out this code into decorators it allows the general code to be clearer
than it otherwise would be.

But you have to ask yourself if the resulting code is really simple. For me it is, but then I'm
familiar with the Decorator pattern. But for many that aren't it's quite complicated. Similarly
JUnit uses pluggable methods which I've noticed most people initially find anything but
clear. So might we conclude that JUnit's design is simpler for experienced designers but
more complicated for less experienced people?

I think that the focus on eliminating duplication, both with XP's "Once and Only Once" and
the Pragmatic Programmer's DRY (Don't Repeat Yourself) is one of those obvious and
wonderfully powerful pieces of good advice. Just following that alone can take you a long
way. But it isn't everything, and simplicity is still a complicated thing to find.

Recently | was involved in doing something that may well be over-designed. It got
refactored and some of the flexibility was removed. But as one of the developers said "it's
easier to refactor over-design than it is to refactor no design." It's best to be a little simpler
than you need to be, but it isn't a disaster to be a little more complex.

The best advice | heard on all this came from Uncle Bob (Robert Martin). His advice was
not to get too hung up about what the simplest design is. After all you can, should, and will
refactor it later. In the end the willingness to refactor is much more important than knowing
what the simplest thing is right away.

Does Refactoring Violate YAGNI?

This topic came up on the XP mailing list recently, and it's worth bringing out as we look at
the role of design in XP.

Basically the question starts with the point that refactoring takes time but does not add
function. Since the point of YAGNI is that you are supposed to design for the present not
for the future, is this a violation?

The point of YAGNI is that you don't add complexity that isn't needed for the current
stories. This is part of the practice of simple design. Refactoring is needed to keep the
design as simple as you can, so you should refactor whenever you realize you can make
things simpler.

http://martinfowler.com/articles/designDead.html 6/16

8/23/2015 Is Design Dead?

Simple design both exploits XP practices and is also an enabling practice. Only if you
have testing, continuous integration, and refactoring can you practice simple design
effectively. But at the same time keeping the design simple is essential to keeping the
change curve flat. Any unneeded complexity makes a system harder to change in all
directions except the one you anticipate with the complex flexibility you put in. However
people aren't good at anticipating, so it's best to strive for simplicity. However people won't
get the simplest thing first time, so you need to refactor in order get closer to the goal.

Patterns and XP

The JUnit example leads me inevitably into bringing up patterns. The relationship between
patterns and XP is interesting, and it's a common question. Joshua Kerievsky argues that
patterns are under-emphasized in XP and he makes the argument eloquently, so | don't
want to repeat that. But it's worth bearing in mind that for many people patterns seem in
conflict to XP.

The essence of this argument is that patterns are often over-used. The world is full of the
legendary programmer, fresh off his first reading of GOF who includes sixteen patterns in
32 lines of code. | remember one evening, fueled by a very nice single malt, running
through with Kent a paper to be called "Not Design Patterns: 23 cheap tricks" We were
thinking of such things as use an if statement rather than a strategy. The joke had a point,
patterns are often overused, but that doesn't make them a bad idea. The question is how
you use them.

One theory of this is that the forces of simple design will lead you into the patterns. Many
refactorings do this explicitly, but even without them by following the rules of simple design
you will come up with the patterns even if you don't know them already. This may be true,
but is it really the best way of doing it? Surely it's better if you know roughly where you're
going and have a book that can help you through the issues instead of having to invent it
all yourself. | certainly still reach for GOF whenever | feel a pattern coming on. For me
effective design argues that we need to know the price of a pattern is worth paying - that's
its own skill. Similarly, as Joshua suggests, we need to be more familiar about how to
ease into a pattern gradually. In this regard XP treats the way we use patterns differently
to the way some people use them, but certainly doesn't remove their value.

But reading some of the mailing lists | get the distinct sense that many people see XP as
discouraging patterns, despite the irony that most of the proponents of XP were leaders of
the patterns movement too. Is this because they have seen beyond patterns, or because
patterns are so embedded in their thinking that they no longer realize it? | don't know the
answers for others, but for me patterns are still vitally important. XP may be a process for
development, but patterns are a backbone of design knowledge, knowledge that is
valuable whatever your process may be. Different processes may use patterns in different
ways. XP emphasizes both not using a pattern until it's needed and evolving your way into
a pattern via a simple implementation. But patterns are still a key piece of knowledge to
acquire.

My advice to XPers using patterns would be

= [nvest time in learning about patterns
= Concentrate on when to apply the pattern (not too early)
= Concentrate on how to implement the pattern in its simplest form first, then add

http://martinfowler.com/articles/designDead.html 7116

8/23/2015 Is Design Dead?
complexity later.
= |f you put a pattern in, and later realize that it isn't pulling its weight - don't be afraid to
take it out again.

| think XP should emphasize learning about patterns more. I'm not sure how | would fit that
into XP's practices, but I'm sure Kent can come up with a way.

Growing an Architecture

What do we mean by a software architecture? To me the term architecture conveys a
notion of the core elements of the system, the pieces that are difficult to change. A
foundation on which the rest must be built.

What role does an architecture play when you are using evolutionary design? Again XPs
critics state that XP ignores architecture, that XP's route is to go to code fast and trust that
refactoring that will solve all design issues. Interestingly they are right, and that may well
be weakness. Certainly the most aggressive XPers - Kent Beck, Ron Jeffries, and Bob
Martin - are putting more and more energy into avoiding any up front architectural design.
Don't put in a database until you really know you'll need it. Work with files first and refactor
the database in during a later iteration.

I'm known for being a cowardly XPer, and as such | have to disagree. |
think there is a role for a broad starting point architecture. Such things as

. L _— . My colleague Neal Ford has delved deeper
stating early on how to layer the application, how you'll interact with the into the techniques for evolutionary design in

database (if you need one), what approach to use to handle the web a fifteen article series for IBM
server developerWorks. He's also delved into video

with a workshop on agile engineering
practices for O'Reilly.

Essentially | think many of these areas are patterns that we've learned

over the years. As your knowledge of patterns grows, you should have a

reasonable first take at how to use them. However the key difference is that these early
architectural decisions aren't expected to be set in stone, or rather the team knows that
they may err in their early decisions, and should have the courage to fix them. Others
have told the story of one project that, close to deployment, decided it didn't need EJB
anymore and removed it from their system. It was a sizeable refactoring, it was done late,
but the enabling practices made it not just possible, but worthwhile.

How would this have worked the other way round. If you decided not to use EJB, would it
be harder to add it later? Should you thus never start with EJB until you have tried things
without and found it lacking? That's a question that involves many factors. Certainly
working without a complex component increases simplicity and makes things go faster.
However sometimes it's easier to rip out something like that than it is to put it in.

So my advice is to begin by assessing what the likely architecture is. If you see a large
amount of data with multiple users, go ahead and use a database from day 1. If you see
complex business logic, put in a domain model. However in deference to the gods of
YAGNI, when in doubt err on the side of simplicity. Also be ready to simplify your
architecture as soon as you see that part of the architecture isn't adding anything.

UML and XP

http://martinfowler.com/articles/designDead.html 8/16

8/23/2015 Is Design Dead?

Of all the questions | get about my involvement with XP one of the biggest revolves
around my association with the UML. Aren't the two incompatible?

There are a number of points of incompatibility. Certainly XP de-emphasizes diagrams to
a great extent. Although the official position is along the lines of "use them if they are
useful”, there is a strong subtext of "real XPers don't do diagrams". This is reinforced by
the fact that people like Kent aren't at all comfortable with diagrams, indeed I've never
seen Kent voluntarily draw a software diagram in any fixed notation

| think the issue comes from two separate causes. One is the fact that some people find
software diagrams helpful and some people don't. The danger is that those who do think
that those who don't should do and vice-versa. Instead we should just accept that some
people will use diagrams and some won't.

The other issue is that software diagrams tend to get associated with a heavyweight
process. Such processes spend a lot of time drawing diagrams that don't help and can
actually cause harm. So | think that people should be advised how to use diagrams well
and avoid the traps, rather than the "only if you must (wimp)" message that usually comes
out of the XPerts.

So here's my advice for using diagrams well.

First keep in mind what you're drawing the diagrams for. The primary value is
communication. Effective communication means selecting important things and neglecting
the less important. This selectivity is the key to using the UML well. Don't draw every class
- only the important ones. For each class, don't show every attribute and operation - only
the important ones. Don't draw sequence diagrams for all use cases and scenarios -
only... you get the picture. A common problem with the common use of diagrams is that
people try to make them comprehensive. The code is the best source of comprehensive
information, as the code is the easiest thing to keep in sync with the code. For diagrams
comprehensiveness is the enemy of comprehensibility.

A common use of diagrams is to explore a design before you start coding it. Often you get
the impression that such activity is illegal in XP, but that's not true. Many people say that
when you have a sticky task it's worth getting together to have a quick design session first.
However when you do such sessions:

= keep them short
= don't try to address all the details (just the important ones)
= treat the resulting design as a sketch, not as a final design

The last point is worth expanding. When you do some up-front design, you'll inevitably find
that some aspects of the design are wrong, and you only discover this when coding.
That's not a problem providing that you then change the design. The trouble comes when
people think the design is done, and then don't take the knowledge they gained through
the coding and run it back into the design.

Changing the design doesn't necessarily mean changing the diagrams. It's perfectly
reasonable to draw diagrams that help you understand the design and then throw the
diagrams away. Drawing them helped, and that is enough to make them worthwhile. They
don't have to become permanent artifacts. The best UML diagrams are not artifacts.

A lot of XPers use CRC cards. That's not in conflict with UML. | use a mix of CRC and
UML all the time, using whichever technique is most useful for the job at hand.

http://martinfowler.com/articles/designDead.html 9/16

8/23/2015 Is Design Dead?

Another use of UML diagrams is on-going documentation. In its usual form this is a model
residing on a case tool. The idea is that keeping this documentation helps people work on
the system. In practice it often doesn't help at all.

= it takes too long to keep the diagrams up to date, so they fall out of sync with the code
= they are hidden in a CASE tool or a thick binder, so nobody looks at them

So the advice for on-going documentation runs from these observed problems:

= Only use diagrams that you can keep up to date without noticeable pain

= Put the diagrams where everyone can easily see them. | like to post them on a wall.
Encourage people to edit the wall copy with a pen for simple changes.

= Pay attention to whether people are using them, if not throw them away.

The last aspect of using UML is for documentation in a handover situation, such as when
one group hands over to another. Here the XP point is that producing documentation is a
user story like any other, and thus its business value is determined by the customer. Again
the UML is useful here, providing the diagrams are selective to help communication.
Remember that the code is the repository of detailed information, the diagrams act to
summarize and highlight important issues.

On Metaphor

Okay I might as well say it publicly - | still haven't got the hang of this metaphor thing. |
saw it work, and work well on the C3 project, but it doesn't mean | have any idea how to
do it, let alone how to explain how to do it.

The XP practice of Metaphor is built on Ward Cunninghams's approach of a system of
names. The point is that you come up with a well known set of names that acts as a
vocabulary to talk about the domain. This system of names plays into the way you name
the classes and methods in the system

I've built a system of names by building a conceptual model of the domain. I've done this
with the domain experts using UML or its predecessors. I've found you have to be careful
doing this. You need to keep to a minimal simple set of notation, and you have to guard
against letting any technical issues creeping into the model. But if you do this I've found
that you can use this to build a vocabulary of the domain that the domain experts can
understand and use to communicate with developers. The model doesn't match the class
designs perfectly, but it's enough to give a common vocabulary to the whole domain.

Now | don't see any reason why this vocabulary can't be a metaphorical one, such as the
C3 metaphor that turned payroll into a factory assembly line. But | also don't see why
basing your system of names on the vocabulary of the domain is such a bad idea either.
Nor am I inclined to abandon a technique that works well for me in getting the system of
names.

Often people criticize XP on the basis that you do need at least some outline design of a
system. XPers often respond with the answer "that's the metaphor". But I still don't think
I've seen metaphor explained in a convincing manner. This is a real gap in XP, and one
that the XPers need to sort out.

http://martinfowler.com/articles/designDead.html 10/16

8/23/2015 Is Design Dead?

Do you wanna be an Architect when you grow up?

For much of the last decade, the term "software architect” has become popular. It's a term
that is difficult personally for me to use. My wife is a structural engineer. The relationship
between engineers and architects is ... interesting. My favorite was "architects are good
for the three B's: bulbs, bushes, birds". The notion is that architects come up with all these
pretty drawings, but it's the engineers who have to ensure that they actually can stand up.
As a result I've avoided the term software architect, after all if my own wife can't treat me
with professional respect what chance do | stand with anyone else?

In software, the term architect means many things. (In software any term means many
things.) In general, however it conveys a certain gravitas, as in "I'm not just a mere
programmer - I'm an architect". This may translate into "I'm an architect now - I'm too
important to do any programming". The question then becomes one of whether separating
yourself from the mundane programming effort is something you should do when you want
to exercise technical leadership.

This question generates an enormous amount of emotion. I've seen people get very angry
at the thought that they don't have a role any more as architects. "There is no place in XP
for experienced architects" is often the cry | hear.

Much as in the role of design itself, | don't think it's the case that XP does not value
experience or good design skills. Indeed many of the proponents of XP - Kent Beck, Bob
Martin, and of course Ward Cunningham - are those from whom | have learned much
about what design is about. However it does mean that their role changes from what a lot
of people see as a role of technical leadership.

As an example, I'll cite one of our technical leaders at ThoughtWorks: Dave Rice. Dave
has been through a few life-cycles and has assumed the unofficial mantle of technical lead
on a fifty person project. His role as leader means spending a lot of time with all the
programmers. He'll work with a programmer when they need help, he looks around to see
who needs help. A significant sign is where he sits. As a long term ThoughtWorker, he
could pretty well have any office he liked. He shared one for a while with Cara, the release
manager. However in the last few months he moved out into the open bays where the
programmers work (using the open "war room" style that XP favors.) This is important to
him because this way he sees what's going on, and is available to lend a hand wherever
it's needed.

Those who know XP will realize that I'm describing the explicit XP role of Coach. Indeed
one of the several games with words that XP makes is that it calls the leading technical
figure the "Coach". The meaning is clear: in XP technical leadership is shown by teaching
the programmers and helping them make decisions. It's one that requires good people
skills as well as good technical skills. Jack Bolles at XP 2000 commented that there is little
room now for the lone master. Collaboration and teaching are keys to success.

At a conference dinner, Dave and | talked with a vocal opponent of XP. As we discussed
what we did, the similarities in our approach were quite marked. We all liked adaptive,
iterative development. Testing was important. So we were puzzled at the vehemence of
his opposition. Then came his statement, along the lines of "the last thing | want is my
programmers refactoring and monkeying around with the design”. Now all was clear. The
conceptual gulf was further explicated by Dave saying to me afterwards "if he doesn't trust
his programmers why does he hire them?". In XP the most important thing the

http://martinfowler.com/articles/designDead.html 1116

8/23/2015 Is Design Dead?

experienced developer can do is pass on as many skills as he can to the more junior
developers. Instead of an architect who makes all the important decisions, you have a
coach that teaches developers to make important decisions. As Ward Cunningham
pointed out, by that he amplifies his skills, and adds more to a project than any lone hero
can.

Reversibility

At XP 2002 Enrico Zaninotto gave a fascinating talk that discussed the tie-ins between
agile methods and lean manufacturing. His view was that one of the key aspects of both
approaches was that they tackled complexity by reducing the irreversibility in the process.

In this view one of the main source of complexity is the irreversibility of decisions. If you
can easily change your decisions, this means it's less important to get them right - which
makes your life much simpler. The consequence for evolutionary design is that designers
need to think about how they can avoid irreversibility in their decisions. Rather than trying
to get the right decision now, look for a way to either put off the decision until later (when
you'll have more information) or make the decision in such a way that you'll be able to
reverse it later on without too much difficulty.

This determination to support reversibility is one of the reasons that agile methods put a
lot of emphases on source code control systems, and of putting everything into such a
system. While this does not guarantee reversibility, particularly for longed-lived decisions,
it does provide a foundation that gives confidence to a team, even if it's rarely used.

Designing for reversibility also implies a process that makes errors show up quickly. One
of the values of iterative development is that the rapid iterations allow customers to see a
system as it grows, and if a mistake is made in requirements it can be spotted and fixed
before the cost of fixing becomes prohibitive. This same rapid spotting is also important for
design. This means that you have to set things up so that potential problem areas are
rapidly tested to see what issues arrive. It also means it's worth doing experiments to see
how hard future changes can be, even if you don't actually make the real change now -
effectively doing a throw-away prototype on a branch of the system. Several teams have
reporting trying out a future change early in prototype mode to see how hard it would be.

The Will to Design

While I've concentrated a lot of technical practices in this article, one thing that's too easy
to leave out is the human aspect.

In order to work, evolutionary design needs a force that drives it to converge. This force
can only come from people - somebody on the team has to have the determination to
ensure that the design quality stays high.

This will does not have to come from everyone (although it's nice if it does), usually just
one or two people on the team take on the responsibility of keeping the design whole. This
is one of the tasks that usually falls under the term "architect'.

This responsibility means keeping a constant eye on the code base, looking to see if any

http://martinfowler.com/articles/designDead.html 12/16

8/23/2015 Is Design Dead?

areas of it are getting messy, and then taking rapid action to correct the problem before it
gets out of control. The keeper of the design doesn't have to be the one who fixes it - but
they do have to ensure that it gets fixed by somebody.

A lack of will to design seems to be a major reason why evolutionary design can fail. Even
if people are familiar with the things I've talked about in this article, without that will design
won't take place.

Things that are difficult to refactor in

Can we use refactoring to deal with all design decisions, or are there some issues that are
so pervasive that they are difficult to add in later? At the moment, the XP orthodoxy is that
all things are easy to add when you need them, so YAGNI always applies. | wonder if
there are exceptions. A good example of something that is controversial to add later is
internationalization. Is this something which is such a pain to add later that you should
start with it right away?

| could readily imagine that there are some things that would fall into this category.
However the reality is that we still have very little data. If you have to add something, like
internationalization, in later you're very conscious of the effort it takes to do so. You're less
conscious of the effort it would actually have taken, week after week, to put it in and
maintain it before it was actually needed. Also you 're less conscious of the fact that you
may well have got it wrong, and thus needed to do some refactoring anyway.

Part of the justification of YAGNI is that many of these potential needs end up not being
needed, or at least not in the way you'd expect. By not doing them, you'll save a good deal
of effort. Although there will be effort required to refactor the simple solution into what you
actually need, this refactoring is likely to be less work than building all the questionable
features.

Another issue to bear in mind in this is whether you really know how to do it. If you've
done internationalization several times, then you'll know the patterns you need to employ.
As such you're more likely to get it right. Adding anticipatory structures is probably better if
you're in that position, than if you're new to the problem. So my advice would be that if you
do know how to do it, you're in a position to judge the costs of doing it now to doing it later.
However if you've not done it before, not just are you not able to assess the costs well
enough, you're also less likely to do it well. In which case you should add it later. If you do
add it then, and find it painful, you'll probably be better off than you would have been had
you added it early. Your team is more experienced, you know the domain better, and you
understand the requirements better. Often in this position you look back at how easy it
would have been with 20/20 hindsight. It may have been much harder to add it earlier than
you think.

This also ties into the question about the ordering of stories. In Planning
XP, Kent and | openly indicated our disagreement. Kent is in favor of

. When we began our journey into evolutiona
letting business value be the only factor in driving the ordering of the 9 ! Y 34

design at ThoughtWorks we ran right into the

stories. After initial disagreement Ron Jeffries now agrees with this. I'm question of whether it was possible to design
. . L . . a database in an evolutionary fashion.

still unsure. I believe it is a balance between business value and technical Thanks to the efforts of Pramod Sadalage,

risk. This would drive me to provide at least some internationalization we discovered that it clearly could be, and

early to mitigate this risk. However this is only true if internationalization that knowledge has stood us in good stead

}))) ever since. For more information you can
was needed for the first release. Getting to a release as fast as possible is read the article where we introduced these

http://martinfowler.com/articles/designDead.html 13/16

8/23/2015 Is Design Dead?

vitally important. Any additional complexity is worth doing after that first techniques to the world on my site.
release if it isn't needed for the first release. The power of shipped,

running code is enormous. It focuses customer attention, grows credibility,

and is a massive source of learning. Do everything you can to bring that date closer. Even

if it is more effort to add something after the first release, it is better to release sooner.

With any new technique it's natural that its advocates are unsure of its boundary
conditions. Most XPers have been told that evolutionary design is impossible for a certain
problem, only to discover that it is indeed possible. That conquering of 'impossible’
situations leads to a confidence that all such situations can be overcome. Of course you
can't make such a generalization, but until the XP community hits the boundaries and fails,
we can never be sure where these boundaries lie, and it's right to try and push beyond the
potential boundaries that others may see.

(A recent article by Jim Shore discusses some situations, including internationalization,
where potential boundaries turned out not to be barriers after all.)

Is Design Happening?

One of the difficulties of evolutionary design is that it's very hard to tell if design is actually
happening. The danger of intermingling design with programming is that programming can
happen without design - this is the situation where Evolutionary Design diverges and fails.

If you're in the development team, then you sense whether design is happening by the
quality of the code base. If the code base is getting more complex and difficult to work
with, there isn't enough design getting done. But sadly this is a subjective viewpoint. We
don't have reliable metrics that can give us an objective view on design quality.

If this lack of visibility is hard for technical people, it's far more alarming for non-technical
members of a team. If you're a manager or customer how can you tell if the software is
well designed? It matters to you because poorly designed software will be more expensive
to modify in the future. There's no easy answer to this, but here are a few hints.

= Listen to the technical people. If they are complaining about the difficulty of making
changes, then take such complaints seriously and give them time to fix things.

= Keep an eye on how much code is being thrown away. A project that does healthy
refactoring will be steadily deleting bad code. If nothing's getting deleted then it's
almost certainly a sign that there isn't enough refactoring going on - which will lead to
design degradation. However like any metric this can be abused, the opinion of good
technical people trumps any metric, despite its subjectivity.

So is Design Dead?

Not by any means, but the nature of design has changed. XP design looks for the
following skills

= A constant desire to keep code as clear and simple as possible
= Refactoring skills so you can confidently make improvements whenever you see the
need.

http://martinfowler.com/articles/designDead.html 14/16

8/23/2015 Is Design Dead?

= A good knowledge of patterns: not just the solutions but also appreciating when to use
them and how to evolve into them.

= Designing with an eye to future changes, knowing that decisions taken now will have to
be changed in the future.

= Knowing how to communicate the design to the people who need to understand it,
using code, diagrams and above all: conversation.

That's a fearsome selection of skills, but then being a good designer has always been
tough. XP doesn't really make it any easier, at least not for me. But | think XP does give us
a new way to think about effective design because it has made evolutionary design a
plausible strategy again. And I'm a big fan of evolution - otherwise who knows what | might

be?
Share: W Ki if you found this article useful, please share it. |
appreciate the feedback and encouragement
For articles on similar topics...
...take a look at the following tags:
Acknowledgments

Over the last couple of years I've picked up and stolen many good ideas from many good people. Most of these
are lost in the dimness of my memory. But | do remember pinching good ideas from Joshua Kerievsky. | also
remember many helpful comments from Fred George and Ron Jeffries. | also cannot forget how many good
ideas keep coming from Ward and Kent.

I'm always grateful for those that ask questions and spot typos. I've been lax about keeping a list of these to
acknowledge, but they do include Craig Jones, Nigel Thorne, Sven Gorts, Hilary Nelson, Terry Camerlengo.

Further Reading

For more articles that talk about my approach to software design, see my website's guide page to software
design. This contains articles that touch on important aspects of evolutionary design, such as the evolutionary
design of databases and service contract interfaces.

For more detail on evolutionary design techniques, take a look at Neal Ford's developerWorks series and video
workshop.

Significant Revisions

May 2004: Added sections on 'The Will to Design', 'Reversibility' and 'ls Design Happening'

http://martinfowler.com/articles/designDead.html 15/16

8/23/2015 Is Design Dead?

February 2001: Article updated with sections on growing an architecture, the role of an architect, and where
things that are difficult to add with refactoring.

July 2000: Original article submitted to XP 2000 and posted to martinfowler.com

Guides Popular Articles Books Site Sections

ThoughtWorks

HvE ThoughtWorks

http://martinfowler.com/articles/designDead.html 16/16

