Beyond API Signatures: An Empirical Study on
Behavioral Backward Incompatibilities of Java
Software Libraries

Eric Ruiz, Shaikh Mostafa, Xiaoyin Wang
Department of Computer Science, University of Texas at San Antonio, TX 78249, USA
{Eric.Ruiz, Shaikh.Mostafa, Xiaoyin. Wang}@utsa.edu

July 17, 2015

Abstract

To make sure that existing client software applications are not broken
after a library update, backward compatibility has always been one of the
most important requirements during the evolution of software libraries.
However, due to various reasons, backward compatibility is seldom fully
achieved in practice, so it is important to understand the status, ma-
jor reasons, and impact of backward incompatibilities in real world soft-
ware. Previous studies related to this topic mainly focus on API signature
changes between consecutive versions of software libraries, while in this
paper, we mainly consider behavioral changes of APIs. Specifically, we
performed large-scale cross-version regression testing on 68 consecutive
version pairs from 15 most popular Java software libraries. Furthermore,
we collected and studied 144 real world software bugs caused by back-
ward incompatibilities of software libraries. Our major findings include:
(1) more than 1,000 test failures / errors and 280 groups of behavioral
backward incompatibilities are detected from 52 of 68 consecutive version
pairs; (2) a large portion backward incompatibilities causing real-world
bugs are related to user interface, which may be difficult to be detected
by current automatic regression testing techniques; (3) the majority of
backward incompatibilities are not well documented; and (4) there exists
a number of fix patterns for behavioral backward incompatibilities.

1 Introduction

Nowadays, as software products become larger and more complicated, software
libraries have become a necessary part of almost any software. For example, a
developer may write several lines of code to generate a trivial ”Hello World”
Android app. When it is executed, it invokes thousand lines of code in software
libraries from the Android platform and the underlying Linux system. The

prevalent usage of software libraries has significantly reduced the cost of software
development and improved the quality of software products.

Like all other software, software libraries also evolve continuously and fre-
quently to support new features and to improve quality. Since software libraries
and their client software are typically maintained by different developers, the
asynchronous evolution of software libraries and client software may result in
incompatibilities. To avoid incompatibilities, for decades, “backward compati-
bility” has been well known as a major requirements in the evolution of software
libraries. Each API method in an existing version of software library should ex-
actly maintain its behavior in the following versions.

However, in reality, full backward compatibility is seldom achieved, and the
resulted incompatibilities have been known to affect software users as well as
the success of software projects. For example, Windows Vista is considered to
be not very successful, and its failure has been largely ascribed to its backward
incompatibility with Windows XP [1]. Also, in October 2014, the automatic
system update to Android 5.0 caused a complete dysfunction of Sogoulnput
(the top Android app for Chinese input on mobile phones, with more than
200 million users), which is not patched until 3 days later [2]. Also, a recent
study [13] has shown that the usage of instable Android APIs is an important
factor affecting the successfulness of Android apps.

With the reported well-known software failures that are relevant to backward
incompatibilities, we believe that it is necessary to conduct thorough studies to
understand the status and reasons of backward incompatibilities in the real
software world, and the result of such studies are able to guide the development
more advanced techniques to support detection, documentation, and resolution
of backward incompatibilities.

There have been several existing empirical studies [21, 16] on the stability
of software libraries, and extensive research efforts on library migration [6, 24].
However, these studies mainly focus on the changes of API signatures (i.e.,
added, revised, and removed API methods) between consecutive versions of
software libraries. Although API signature changes form an important category
of backward incompatibilities, they do not describe the whole picture. Even if
the signature of an API method remains identical in a new version, it is possible
that the behavior of the API method changes (i.e., generate different output or
side effect when certain input is fed in). Actually, since API signature changes
can be easily detected by compilers, although they may cause compilation errors
and extra efforts in library migration, they are less likely to cause real-world
bugs, and thus are relatively less harmful compared to API behavioral changes.

To acquire a deeper and more complete understanding of backward incom-
patibilities in real world software libraries, in this paper, we present an empirical
study on behavioral backward incompatibilities on 68 consecutive version pairs
from 15 popular Java software libraries. We further inspected 144 real-world
bugs that are caused by backward incompatibilities in these libraries. We chose
Java software libraries as our subjects for two reasons. First, Java is a very
popular programming language, and Java software typically extensively relies
on software libraries. Second, most popular Java software libraries are open

source with test code available, so that it allows us to look into backward in-
compatibilities more deeply in our study.

Specifically, in our study, for each consecutive version pairs, we performed
cross-version testing to test the new version of software library with the test code
of the old version. After that, we collected the test failures and test errors as
backward incompatibilities and inspected them to categorize the reasons behind
as well as whether they are well documented. To further investigate the impact
of backward incompatibilities on the client software, we collected 144 real world
bug reports, categorized the reasons behind these bugs, and studied how these
bugs are fixed by either software library developers or client software developers.
The major findings of our study include:

e Behavioral backward incompatibilities are very common in popular Java
software libraries.

e There are many bug-inducing behavioral backward incompatibilities that
are related to user interface and other system components.

e Very small proportion of behavioral backward incompatibilities are docu-
mented.

e there exists a number of fix patterns for behavioral backward incompati-
bilities.

This paper makes three main contributions as follows.

e A large scale experimental study on the existence of behavioral backward
incompatibilities in 15 popular Java libraries and 68 version pairs.

e A detailed manual study of 144 real world bugs caused by backward in-
compatibilities.

e A data set including 280 backward incompatibilities detected in cross-
version testing, and 144 real world bugs, serving as a foundation for future
research in this area.

We organize the rest of the paper as follows. In Section 2, we introduce
the design of our study and the process of data collection. In Section 3, we
present the result of our study on both cross-version testing of consecutive ver-
sions pairs of software libraries, as well as real-world bugs caused by backward
incompatibilities. After that, we discuss the learned lessons and limitations of
our study in Section 4, and the related works in Section 5. Before we conclude
in Section 7, we indicate a number of future research directions based on the
results of our study in Section 6.

2 Study Setup

In this section, we introduce the design and data-collection process of our study.
First of all, we give our definition of behavioral backward incompatibilities. Be-
havioral Incompatibilities are backward incompatibilities caused by changing
the behavior of a method / field (i.e., changing the default value), while its
signature remain untouched. Unlike signature incompatibilities, behavioral in-
compatibilities are difficult to detect, and the reasons and characteristics of
behavior incompatibilities have not been well studied and are still unclear. This
is the reason why we try to acquire more understanding of behavioral incom-
patibilities through studies in this paper.

2.1 Research Questions

In this part of our study, we try to answer the four research questions as follows.

e RQ1: How prevalent are behavioral incompatibilities between consecutive
version pairs of Java software libraries?

e RQ2:What are the bug-inducing backward-incompatibilities and how can
they be categorized?

e RQ3:What is the documentation status of the incompatibilities causing
real-world Backward-Incompatibility Bugs?

¢ RQ4:How are the bug-inducing backward-incompatibilities fixed in real
software practice?

With the answers of these questions, we expect to understand, (1) whether
backward incompatibility is prevalent in the Java software libraries, and a prob-
lem that software developers need to face frequently, (2) whether it is possible
to classify behavioral incompatibilities into several categories and develop corre-
sponding detection and resolution techniques, (3) whether backward incompat-
ibilities are documented sufficiently, and what type of technical support may be
desired to help documentation of backward incompatibilities, (4) whether there
exists certain patterns on fixing backward-incompatibility related bugs.

To answer the four research questions, we designed a study that applies
cross-version testing to 68 versions in 15 top Java software libraries, and another
bug-report study that involves manual inspection of bugs related to behavioral
backward incompatibilities in real world.

2.2 Selection of Version Pairs

Software developers use different levels of versions to mark different granularity
of milestones in software evolution. The version strategies and corresponding
naming conventions vary a lot in different software projects. Since the code
difference between different levels of version pairs varies, the selection of version
pairs may have a large impact to our study results.

Table 1: Basic Information of Studied Subjects and Versions

Subject St. V. End V. # V. St. Time End Time
OpenJDK 7b157 8b13 2 2011-7 2014-3
Android 4.3.1 5.0.1 2 2013-10 2014-12
log4j 2.0.0 2.1 2 2014-7 2014-10
maven 3.0.0 3.2.5 4 2010-10 2014-12
bukkit 1.2.3 1.7.2 6 2011-12 2013-12
beanutils 1.9.0 1.9.2 1 2008-9 2013-12
codec 1.6 1.7 1 2011-11 2012-9
fileupload 1.2.0 1.3.1 3 2007-2 2014-2
cm-io 2.0 2.4 4 2007-7 2012-4
ela. Search 1.0.3 1.3.9 7 2014-4 2015-2
http-core 4.0.1 4.3.3 6 2009-2 2014-2
jodatime 2.0 2.7 7 2011-5 2015-1
jsoup 1.1.1 1.7.3 10 2010-6 2013-11
neo4j 1.8.3 2.0.3 5 2012-11 2015-2
snakeyaml 1.3 1.11 8 2009-7 2012-9

In our study, we first rule out the alpha and beta versions which are typically
immature versions and are not widely used by client software developers. Re-
garding mature versions, we observe that they mainly fall into two levels. The
first level of versions involve major changes in software features and usages, and
we refer to them as Major Versions. Typically, major versions are developed
as separate branches in the version control system, and consecutive pairs (e.g.,
Java 6 and Java 7) of major versions are maintained simultaneously by soft-
ware developers . By contrast, the second level of versions are mainly for bug
fixes and minor changes inside a major version, and we refer to them as Minor
Versions. Typically, minor versions corresponds to a certain revision number in
the trunk or a branch, and consecutive pairs (e.g., Java6u32 and Java6ud0) of
minor versions are not maintained simultaneously.

To acquire a full picture, in our study, we study backward incompatibili-
ties both between two consecutive major versions and within a major version.
Specifically, if a major version has more than two minor versions, we choose the
first minor version and the last minor version to form an inner-major-version
version pair. For example, ElasticSearch has four minor versions (1.0.0 through
1.0.3) for major version 1.0, and three minor versions (1.1.0 through 1.1.2) for
major version 1.1. So, in our study, we choose four versions (1.0.0, 1.0.3, 1.1.0,
1.1.2), and form 1 major version pairs (1.0.0 to 1.0.3, 1.1.0 to 1.1.2) and two
minor version pairs (1.0.3 to 1.1.0).

The details of our selected libraries and versions as presented in Table 1, and
the full list of version pairs used in our study are at our project website!.

2.3 Detection of Backward Incompatibilities

To detect behavioral incompatibilities, we first make sure we can successfully
build all the software library versions used in our study, and all test cases pass.
Then, we automatically recompile the test code of previous version with the
source code of the new version, and iteratively remove the test cases that do

Thttp://xywang.100871.net/empIncomp.html

not compile with the new version of source code (typically because they suffer
from signature compatibilities), until all test cases can be compiled successfully.
Finally, we execute all the remaining test cases and collect test failures and
erTors.

It should be noted that, one behavioral incompatibility (i.e., behavioral
change of an API method) may causes multiple test failures and errors, and
we introduce the clustering algorithm for backward incompatibility groups as
below.

Clustering of Backward Incompatibility Groups. To cluster test fail-
ures and errors in to incompatibility groups, we leverage the observation that,
if two test methods do not refer to the same set of methods in the source code
of the software library, their failure must not be caused by the same backward
incompatibility. It should be noted that, it is still possible that the behaviors of
two methods in the software library change due to a same root cause. However,
they are typically considered as two backward incompatibilities of the software
library. Therefore, in our algorithm, we first cluster all test cases in one test
class to a cluster. The reason is that, they may fail due to a same error in
the setup method of the test class. After that, for each pair of test classes, if
they invoke a same method in the source code of the library, we deem them as
interfered. Then, we cluster the test cases based on the closure of the inter-
ference relationship. Note that, for JDK, we rule the commonly used methods
such as java.lang and java.util. Note that the way we cluster backward in-
compatibilities is also conservative, which is consistent with detection process.
Therefore, we can guarantee that all of the identified incompatibility groups are
truly incompatibility groups.

simply check whether two test cases (failed or with error)

2.4 Collection of Bug Reports

To collect bug reports related to backward incompatibilities. We searched two
large on-line open bug repositories: JIRA and Github. Specifically, we used
as keywords the combination of terms related to software upgrading (e.g., “up-
grade”, “update”, “version”), and the names of the software libraries listed in
Table 1. From the collected bug reports, we randomly selected 500 bug reports,
and carefully inspected these bug reports. Specifically, we read the developers’
comments and other references from the bug report to check whether they are
confirmed by the developers to be caused by backward incompatibilities, and
retain all the bug reports that are caused by backward incompatibilities.

It should be noted that, when collecting both bugs that are confirmed fixed
and the bugs that are decided to be not fixed. The reason is that, backward
incompatibility bugs are related to both software libraries and client software, so
they can be fixed either at the library side or at the client side. Also, there are
cases that a backward incompatibility bug is never fixed because the software
library developers refuse to revert their changes, and the client developers did
not find a way to work around it. In such cases, the developers may choose to
not to migrate to the new version of software library (not possible for runtime

Table 2: Basic Information of Backward-Incompatibility-Related Bugs

Subject Library Bugs | Client Bugs | Total
Java SDK 9 13 22
Android 15 70 85
Other 31 6 37
Total 55 89 144

libraries such as JDK and Android), or have the users to tolerate the bug (if
the bug is relatively minor), or even give up the whole project (we do observe
such cases).

With the process above, we collected 144 bugs. We divide these bugs into
two groups: library bugs that are submitted to the software library project
that has backward incompatibilities, and client bugs that are submitted to a
software client project because it triggers a backward incompatibility of one of
its software libraries. The breakdown of collected bugs are shown in Table 2.

From the table, we can observe that, as we used a random selection of bugs,
the majority of selected bug reports are from Android and Java SE. The reasons
are two fold. First, Java SE and Android are much popular than other software
libraries studied. Actually, Java SE is used in all Java projects, and Android is
used in 34% of the top 10,000 projects we studied for ranking software libraries,
while ApacheHttp which ranks next is used in only 10% of the projects. Second,
Java SE and Android are both runtime platforms, so that client software devel-
opers do not have control on which version of JVM and Android system will be
used with their software. Therefore, backward incompatibilities may be revealed
after a Java or Android update at the users’ side, and get reported to the client
software developers. By contrast, most of the other libraries (e.g., Apache li-
braries) in our study are packaged with the client software. Thus, client software
developers are able to test the backward compatibility of a new software-library
version, and work around the backward incompatibilities before the software is
released to the users. This actually also explains another observation that, the
majority of bugs of Android and Java SE are client bugs, while the majority of
bugs of other libraries are library bugs. The reason is that, Android and Java
SE backward incompatibilities are more likely to be reported by end users to
the client software developers as client bugs, while backward incompatibilities
in other libraries are more likely to be reported by client software developers to
library software developers as library bugs.

3 Study Results

In this section, we present the result of our study on both cross-version testing
of consecutive software-library version pairs, and on real-world bugs caused by
backward incompatibilities.

Table 3: Detected Backward Incompatibilities in Software-Library Version Pairs

Sbj. Failure Error B-Incomp.

T. Av. I/A T. Av. I/A T. Av. I/A
JDK | 203 | 101.5 | 2/2 15 7.5 | 2/2 48 24 | 2/2
and 112 56 2/2 11 5.5 | 2/2 41 20.5 | 2/2
log 71 | 355 | 2/2 0 0| 0/2 4 2 | 2/2
mav 14 3.8 3/4 226 56.5 4/4 25 6.3 4/4
buk 15 2.5 2/6 31 5.2 | 3/6 8 1.3 | 4/6
bea 0 0 0/1 0 0| 0/1 0 0| 0/1
cod 4 4 1/1 6 6 1/1 3 3 1/1
fil 0 0 0/3 12 4 2/3 3 1.5 2/3
cio 4 1 1/4 2 0.5 1/4 3 0.8 2/4
ela 36 5.1 | 4/7 | 98 14 | 3/7 | 31 | 44 | 4/7
htt 203 33.8 5/6 15 2.5 | 4/6 34 5.7 | 5/6
jod 15 22 | 5/7 6 | 08 | 2/7 9| 1.3 | 5/7
jso 54 5.4 | 9/10 2 | 02| 1/10] 20 2 | 9/10
neo 5 1| 2/5 71 14| 1/5 5 1] 2/5
sna 108 13.5 8/8 14 1.8 | 4/8 46 5.8 | 8/8
Tot. 844 12.4 438/ 445 6.5 2688/ 280 4.1 5628/

3.1 Backward Incompatibilities of Popular Libraries

We present the detected test failures / errors from software-library consecutive
version pairs in Table 3. The first column of the table presents the subject
name. To save space, we use only the first 3 letters of each subject. Note
that the projects are listed in the same order as in Table 1. The columns 2
to 4 present the total number of test failures detected in all version pairs of a
specific subject (abbreviated as T.), the average number of test failures detected
in each version pair (abbreviated as Av.), and the number of versions where test
failures are detected (denoted as I) divided by all version pairs of the subject
(denoted as A). The columns 5-7 and 8-10 present similar data for test errors
and backward incompatibility groups (clustering of backward incompatibility
groups is introduced in Section 2.3). It should be noted that test failures and
test errors are two different ways by which a test case may fail. Typically, a
test failure is raised when an assertion in the test case fails, while a test error is
raised when the test throws an unhandled exception or fails to complete (e.g.,
reaching timeout).

From Table 1, we have two major observations. First of all, we find that
behavioral backward incompatibilities are prevalent among these popular Java
software libraries. We detect test failures in 13 of 15 subjects, and backward
incompatibilities in 14 of 15 subjects. Furthermore, among 68 version pairs
we studied, 52 version pairs (76.5%) suffered from backward incompatibilities.
Considering that cross-version testing may generate a very low underestima-
tion of the number of incompatibilities, the prevalence of behavioral backward
incompatibilities may be even higher than what is shown in the table.

Second, on average, we detected 12.4 test failures, 6.5 test errors, and 4.1
incompatibility groups for each version pair, which shows that one version pair
typically suffers from multiple incompatibilities. It should be noted that due to
our conservative algorithm to cluster incompatibility groups, the actual number
of incompatibilities groups may be even higher.

Table 4: Distribution of Backward Incompatibilities in Different Software-
Library Version Pairs

Subject Total [Average Incomp. V / Al V

MG | Mn. | M. | Mn. M. M.
TDK 35 3 35 3 /1 /1
Android 41 | N/A | 205 | N/A 2/2 N/A
log4j 3 1 3 1 1/1 1/1
maven 13 12 6.5 6 2/2 2/2
bukkit 3 51 08| 25 3/4 1/2
beanutils N/A 0 | N/A 0 N/A 0/1
codec 3 | N/A 3 | N/A 1/1 N/A
fileupload 0 3 0 1.5 0/1 2/2
cm-io 3 | N/A 0.8 | N/A 2/4 N/A
ela.Search 0 31 0 7.8 0/3 4/4
http-core 15 19 5| 63 2/3 3/3
jodatime 15 | N/JA | 2.2 | N/A 5/7 N/A
jsoup 13 7 2.2 1.8)7 3/4
neodj 5 o] 17 0 2/3 0/2
snakeyaml 46 | N/A 4.6 | N/A 10/10 N/A
Total 195 91 4.1 4.3 36/47 16/21

Documentation of Backward Incompatibilities. Since in our experi-
ment, we guarantee that all tests pass in their original version, the test errors
and failures detected should be mainly caused by intended behavioral changes.
So we furthered studied the documentation status of these changes. Specifically,
we randomly chose 50 test failures / errors? from 50 different incompatibility
groups (10 from JDK, 10 from Android, and 30 from other libraries), and then
carefully checked the corresponding release notes, API documents, and migra-
tion guides (for Android). We discovered that only 17 (6 of 10 in Java, 5 of 10
in Android, and 6 of 30 in other libraries) of the 50 test failures / errors have
their behavioral changes been documented.

Distribution of Incompatibilities in major / minor versions. Be-
yond the overall status of backward incompatibilities between consecutive ver-
sion pairs of software libraries, we further studied the difference between major
and minor version pairs. The results are presented in Table 4.

From Table 4, we have the observation that, both types of version pairs
suffered from about 4 backward incompatibilities on average, and about 75% to
80% of each types of version pairs are backward incompatible.

We notice that, to rule out signature-level incompatibilities, we delete the
test cases that do not compile in our cross-version testing. Since major version
pairs have more signature-level incompatibilities, less test cases are being used in
cross-version testing. Therefore, the similar numbers in the table may not imply
similar severity of backward incompatibility. However, the table does show that
there are many backward incompatibilities between minor version pairs, which
is not a good news, because minor version pairs are typically supposed to be
used for bug fixing and minor changes, and to be backward compatible.

2The list of studied test failures / errors is in our project web site.

3.2 Bugs Related to Backward Incompatibilities

In the previous subsection, we investigated the prevalence of backward incom-
patibilities among popular software libraries, by detecting test errors / failures
from cross-version testing. In this subsection, to answer the second research
question, we present the study result on real world bug reports related to back-
ward incompatibilities, and explore how backward incompatibilities are affecting
the client software developers. The basic information of the collected bug re-
ports are presented in Table 2. In the following subsections, we first identify bug
reports that are related to signature incompatibilities, and cross-software dupli-
cate bug reports. Then, we categorize bug-inducing behavior incompatibilities
by their incompatible behavior and the condition to invoke the incompatible
behavior, as well as study the documentation status of them. Finally, we study
how these bug are fixed or resolved by library developers and client developers.

3.2.1 Signature Incompatibilities

Since the bug reports are randomly collected, some of the bug reports are re-
lated to signature-level incompatibilities. As we mentioned in Section 1, since
signature-level incompatibilities fail compilation, they are not likely to result in
real world bugs.

Among the 144 bug reports, we do find 18 of then related to signature-
level incompatibilities. Specifically, 6 of the 18 bugs are library bugs, which
are reported by client developers to request of the recovery of a removed API
method. Other 6 of the 18 bugs are runtime errors from client software run-
ning on Android, Java, and Bukkit. Because these libraries serve as runtime
environments, when automatic updates happen, the software running on them
will throw exceptions such as “NoSuchFieldException” or “UnSupportedOper-
ationExceptio”.

The rest 6 of the 18 bug reports are more interesting. As for these bugs, the
developers of relevant client software use reflections to invoke the API methods
with signature changes, or use “instanceof” operations, or downcasts on the
classes whose inheritance hierarchy has changed. Thus the signature incompat-
ibilities become latent, and cannot be detected by compilers. It should be noted
that, 4 of the 6 bug reports are related to Android. Reflection is encouraged in
Android to address backward incompatibilities (i.e., call different API methods
for different Android versions), so it seems that reflection serves as a double-edge
sword here.

3.2.2 Behavioral Incompatibilities

Besides, the 18 bug reports discussed above, the rest 126 bug reports are all
related to behavioral incompatibilities. Before we perform more in-depth in-
vestigation, we first manually scanned the bug reports to detect cross-software
duplicate bug reports. Inner-software duplicate bug reports are typically labeled
and we did not select them when collecting our bug report set. However, dif-
ferent client software may fail due to a same backward incompatibility, so the

10

Table 5: Basic Information of Backward-Incompatibility-Related Bugs

Subject | Library Bugs | Client Bugs | Total
JDK 8 10 18
Android 13 51 64
Other 29 1 30
Total 50 62 112

relevant client bug reports are “duplicate” with each other. After the duplicate-
bug-report detection, we identified 112 incompatibilities as presented in Table 5.

3.2.3 Incompatible Behaviors

With investigation of the bug-inducing behavioral incompatibilities, we identify
the following major types of incompatible behaviors.

Unhandled Exception indicates that, in the new version of the software
library, an API method throw a exception that it does not throw under the
same usage scenario in the old version.

Infinite Loop indicates that, in the new version of the software library, an
API method will fall in an infinite loop and never return under certain usage
scenario.

Return Variable Change indicates that the return value of the API
method changes in the new version under certain usage scenario. Specifically,
we divide this category into three sub-categories. A Value Change indicates
that a primitive value (e.g., integer, boolean, String) is changed. The value
can be of the return variable itself or of a field of the return variable. A Type
Change indicates that the actual type of the return value is changed, although
the signature itself remain unchanged. This typically happens when the return
type in the API method signature has many subtypes (e.g., java.lang.0Object).
A Structure Change indicates that, no primitive values in the return object is
changed, but the object is organized differently (i.e., pointer fields or sub-fields
of the object is changed).

Besides the control flow and the return value, a backward incompatible be-
havior may be related to changes of other parts of the software itself and the
system (generally categorized as Other Effects), such as side effect on other
variables in memory (Memory), changing the user interface (User Interface),
the file system (File Sys.), and the way system events are sent and received
(Sys. Event). An example of Sys. Event is Bug-408: “be able to configure as a
default SMS app in KitKat” in TextSecure.

In Android 4.4, SMS apps are no longer able to send SMS to the SMS
provider (rejected silently) in the Android system, unless they are reset to receive
a broadcast SMS_DELIVER_ACTION.

The breakdown of all incompatibilities according to the backward incompat-
ible behaviors is presented in Table 6. In the table, column 1 presents incompat-
ible behaviors. Columns 2 and 3 present the number of library bugs (denoted as

11

Table 6: Categorization of Incompatible Behavior

Behavior Android JDK Other All
L C|LJ]C L[C
Unhandled Exception 2 21 5 5 13 1 47
Infinite Loop 2 2 0 0 0 0 4
Value Change 2 2 1 3 9 0 17
2&%’:“ Type Change 1 20 1]o0] 1] o0 4
Structure Change 0 0 0 1 3 0 4
Memory 1 0 1 0 1 0 3
Other User Interface 5 19 0 1 1 0 26
Effects File Sys. 0 2 0 0 1 0 3
Sys. Event 0 1 1 0 0 0 2

L) and client bugs (denoted as C) from Android. Columns 4-7 present similar
data for Java and Other subjects. Column 8 presents the total of each line.

From Table 6, we have the following observations.

First of all, unhandled exception and infinite loop account for 51 of the 112
(45%) incompatible behaviors. Although it is possible that these behaviors are
more likely to be reported as bugs due to their severity, this proportion of 45% is
not very far from the proportion of test errors among test errors / failures (35%
that can be calculated from numbers in Table 3). This implies that simpler and
more scalable techniques that targets at unhandled-exception related changes in
the software library may be quite useful in detecting backward incompatibilities.

Second, primitive value changes accounts for 17 incompatible behaviors (15
%). This actually implies that, symbolic summarization of API methods is still
useful, but may be not necessary to detect the majority of backward incompat-
ibilities.

Third, user interface changes accounts for 26 incompatible behaviors (22.3%),
which is the second largest category. We investigated the bug reports in this
category and discover that, most bugs are related to Ul settings, such as theme
colors and padding widths. For example, in Bug-46: “Bold ZeroTopPadding-
TextView displays cut off on 4.4” of Android-Betterpickers, the developers
found out that, on Android 4.4, if they do not update the padding settings be-
fore showing the date information (which was what they did on Android 4.3),
only half of the date information can be seen. It should be noted that, user
interface bugs are not just decoration problems, and they may largely affect
software usages (i.e., information cannot be seen, or buttons go outside the
screen and cannot be clicked).

3.2.4 Invocation Constraints

In our study, we further investigated the conditions that invoke bug-inducing
behavioral incompatibilities, and identified the following major types of condi-
tions.

Always indicates that the incompatible behavior always happens as long
as the corresponding API method is invoked. Such incompatibilities can be
easily detected by regression unit testing, so they are more likely to be intended
behavioral changes. However, it should be noted that such incompatibilities may

12

Table 7: Categorization of Invocation Conditions

Conditions Android Java Other All
L C L C L C
Always 5 14 2 1 2 0 24
Environment 0 1 0 0 1 0 2
Special Type 0 2 0 0 2 0 4
Multiple APIs 4 21 1 5 7 1 39
Trivial Value 0 0 1 0 2 0 3
Input String Format 2 2 3 3 6 0 16
Specific Field 0 4 0 0 0 0 4
Specific Value 2 7 1 1 9 0 20

not be easily detected in the client software, because the relevant API method
may not easily invoked, and the incompatible behavior (e.g., changed return
value) may be overwritten and thus become unseen under certain conditions.

Environment indicates that the incompatible behavior happens only under
certain environments (e.g., operating systems, language settings).

Special Type indicates the argument must be of a specific subtype of its
parameter type in the API method signature.

APIT indicates that a number of other API methods must be invoked before
the backward incompatible API method to invoke its incompatible behavior.

Input indicates that the incompatible behavior happens when a certain
input value is fed into the corresponding method. Specifically, we divide this
category into four sub-categories. Trivial Value indicates that a null pointer or
an empty string / list is the invoking input. String Format indicates that specific
structured strings are the invoking input. Specific Field indicates that objects
with specific values at a specific field of the input object are the invoking input.
Specific Field indicates that specific primitive values (not including strings) are
the invoking input.

The breakdown of bug reports according to incompatible-invoking conditions
is presented in Table 7. From the table, we have the following observations.

First of all, 24 of 112 (21%) incompatibilities always happen, causing at least
15 client-side bugs. As we mentioned above that such incompatibilities tend
to be intended, this actually calls for a better documentation of the behavior
changes. We will discuss on this topic later in the study of documentation status
of backward incompatibilities.

Second, only 2 of the incompatibilities are related to the environment. This
may be largely due to the platform independence of Java, so we doubt whether
this conclusion can be generalized to other programming languages.

Third, 39 incompatibilities (35%) occur only after certain other API meth-
ods are invoked. This actually implies that a lot of behavior incompatibilities
happen under special usage scenarios. For library developers, they may not be
able to come up with such usage scenario easily, but client software code may
be helpful.

13

Table 8: Documentation Status of Incompatibilities

Behavior Android | Java Other | All
L C|L|C]| L|C

No Doc. 12| 43| 7| 629 | 1| 98

Release Notes 1 11| 3 00 6

Doc. | JavaDoc 0 31011 00 4

Migration Guide | 0 41010 0] 0 4

3.2.5 Call Backs

One interesting finding in the 112 studied incompatibilities is that, there are
6 of them related to call backs. All of these 6 incompatibilities are from An-
droid bugs (4 client bugs and 2 library bugs). One example of call-back-related
incompatibilities is Bug-62100: “WebViewClient.onPageFinished() called mul-
tiple times” of Android system. In Android 4.4, this call back method is called
multiple times when there are multiple frames in the web view, while it is called
only once before 4.4. Such change may cause severe problem, if the client de-
velopers close some resources (closing a closed resource may cause exceptions)
or change some global objects such as counters, in the call back.

Call-back backward incompatibilities can easily happen, because library de-
velopers may simply change the way they are calling a certain method inside
their code, without knowing that this method is being overridden by client devel-
opers. Also, call-back backward incompatibilities are difficult to avoid, because
library developers cannot make any assumptions on the content of the call back.

3.3 Documentation of Bug-Inducing Incompatibilities

To answer the third research question, we further studied the documentation
status of the bug-inducing incompatibilities. Since these incompatibilities are
bug inducing, we predict that they may be poorer documented then the incom-
patibilities detected from cross-version testing (34% documented), and the re-
sults shown in Table 8 confirm our guess. In Table 8, the first column presents
whether the documentation status (and the place if documented). The rest
columns are organized similar to Table 6.

From Table 8, we have the following observations. First of all, bug-inducing
behavioral incompatibilities are very poorly documented. Only 14 (13%) in-
compatibilities are documented. Also, the documented changes are relatively
scattered, especially for Android (in release notes, JavaDocs, and Migration
guides).

Second, we notice 8 client bugs of Android and 4 client bugs of Java are
related to documented behavioral changes. This imply that we may need a
better way then documentation to convey the information of behavioral change
and remind client software developers about such changes.

14

Table 9: Resolution of Library Bugs

Resolution Android Java Other All
Reverted 1 0 2 3
Fixed Patched 7 5 18 30
Double Support 0 0 1 1
Intended 6 2 10 18
Not Fixed | Discouraged 1 2 0 3

3.4 Resolution of Backward-Incompatibility Bugs

To answer the fourth research question, we further studied how the real world
bugs related to backward incompatibilities are resolved (note that they may
be not fixed). It should be noted that, we include the bug reports that are
caused by signature incompatibilities and duplicate bug reports in the study.
The reason is that, signature-incompatibility-related bugs are typically resolved
similarly to behavior-incompatibility-related bugs. Also, cross-software dupli-
cate bugs may be fixed different in different client software. We present and
discuss the resolution of library bugs and client bugs in the following two sub-
sections, respectively.

3.4.1 Resolution of Library Bugs

The breakdown of bugs according to how they are resolved is shown in Table 9.
The first two columns present the types of resolution. If a library bug is fixed,
we check whether it is fixed by a simple revert of the previous change, a patch of
the previous change, or library developers decided to support both the previous
behavior and the new behavior (typically by adding a parameter, and set either
the previous behavior or the new behavior as default). If a library bug is not
fixed, we study how library developers response to the bug report, and check
whether it is intended behavior, or the developer is reporting a behavioral change
on internal APIs which should not be used by client developers.

From Table 9, we have the following observations. First, 21 of 55 library
bugs are not fixed. The major reason is that it is an intended behavior. It
should be noted that, since these behaviors are reported as library bugs, they
are likely to already cause some bugs or at least test failures at the client side.

Second, among the 34 bugs that are fixed, most of them are patched, which
shows that the incompatibilities are due to side effect of other productive changes.

3.4.2 Resolution of Client Bugs

The breakdown of bugs according to how they are resolved is shown in Table 10.
The first two columns present the types of resolution. If a client bug is fixed,
we check whether it is fixed by (1) changing the incompatible APT; (2) changing
the input value; (3) adding an API invocation to set a certain internal-state
field before or after the incompatible API invocation; (4) converting the return
value of the incompatible API invocation to the original value; (5) a global
structural code change; (6) updating libraries; (7) changing configuration of

15

Table 10: Fixes of Client Bugs

Resolution Android Java | Other All
Change API 4 2 3 9

Change Input 13 2 1 16

Add Set Field 17 1 0 18

) Return Convert 6 0 0 6
Fixed Structural 11 6 0 17
Config 2 0 0 2

Lib. Update 2 0 1 3

Bypass 4 0 0 4

. Wait Lib. Fix 4 2 0 6

Not Fixed Tolerate 7 0 1 8

software; or (8) bypassing the incompatibility behavior by skipping software
features. An example of bypassing is the resolution Bug-969: “Android 5.0 crash
when trying to open the app”, in which the client developer simply commented
out the backward-incompatible resource fetching code that causes the crash.

For the client bugs that are not fixed, we discovered two resolutions. The
first resolution is that the client developer simply decided to wait until a new
version library is released. One reason of such resolution is that, the incompati-
bility is caused by a regression bug, so the client developer waits for the library
developers to release a bug-free version. Another reason (and the major reason
in our study) is that, the incompatibility affects a third-party library that the
client developers are relying on. Since the client developers cannot change the
code of the third-party library (sometime they even do not have access to the
source code), they are not able to resolve the incompatibility, and have to wait
for the new version of the third party library.

The second solution is that, the client developer simply tolerate the behavior
change (if the incompatibility does not cause crashes). They may simply ask
their users to get used to the new behavior such as a Ul change, or transfer the
incompatibility to downstream developers.

From Table 9, we have the following observations.

First of all, 14 client bugs are not fixed. It should be noted that, we find
that most developers are willing to and have tried to fix the bugs, but backward-
incompatibility bugs are relatively more difficult to fix, because they typically
involve code written by other people.

Second, although there are 17 client bugs fixed through structural changes,
which may be very complicated. 49 client bugs are fixed through changing API,
changing input value, add an API to set field, or convert the return value to
the original value. Such resolutions are relatively simple have the potential to
be automated.

Reporting to Library Developers. In our study, we further studied
whether client developers would like to report their bugs to the library devel-
opers. Among the 89 client bug reports, we find that the symptom is reported
to library developers in only 6 bug reports. In most of the cases, the devel-
opers simply search through the Internet to find a workaround. Also, for the
6 reported bugs, only 3 are fixed by the library developers, while the other 3
are rejected because the corresponding backward incompatibilities are intended

16

behaviors.

4 Discussion

In this section, we discuss about the lessons learned from our study, as well our
limitations and the threats to our study.

4.1 Lessons Learned

Prevalence of Behavioral Incompatibilities. Our study shows that be-
havioral incompatibilities are very common in popular Java software libraries.
Although cross-version testing is able to reveal only a small portion of poten-
tial backward incompatibilities, we still detected more than 1000 test failures
and errors, as well as identified 280 incompatibility groups. We also find that
behavioral incompatibilities do cause lots of real bugs in the real world.

Detection of Behavioral Incompatibilities. Our study shows that, the
invocation conditions of behavioral incompatibilities vary, and the invocation
of other APIs is one of the major condition. This implies that testing an API
method together with other methods that may change relevant internal mem-
ory state may benefit the detection of behavioral incompatibilities. We also find
that, user interface change is one of the major symptom of behavioral incompat-
ibilities. This calls for automatic user-interface checking techniques to support
regression testing of GUI applications.

Documentation of Behavioral Incompatibilities. Our study shows
that the documentation status of behavioral incompatibilities is very poor. Even
if a behavioral change is documented, there are still many relevant client bugs.
We believe that, advanced techniques on documentation of behavioral incom-
patibilities is in a great need and will help reduce many bugs related to backward
incompatibilities. The technique should be able to document various factors of
behavioral changes such as the APIs that help to invoke behavioral incompati-
bilities, and the changes on the user interface.

Resolution of Behavioral Incompatibilities. Our study shows that,
there are a number of code patterns for fixing bugs related to behavioral incom-
patibilities. Specifically, a lot of bugs are fixed through direct adjustment of the
input values, or conversion of the return values. Also, we find that many bugs
are fixed by directly setting proper values to a field whose value is changed due
to the behavioral change of the API method. The existence of such patterns
show possibilities that many bugs related to behavioral incompatibilities can be
fixed automatically.

4.2 Limitations and Threats

Limitations. As an early step towards better understanding of behavioral
backward incompatibilities, our study has a number of limitations.

17

First of all, we use cross-version testing to detect behavioral backward in-
compatibilities in software libraries. This result in an under-estimation of the
number of behavioral incompatibilities between version pairs. Also, since we re-
quire all test cases pass in their original versions, the detected incompatibilities
are biased to the intended behavioral changes (since the relevant test cases are
already fixed). However, the major goal of our study on regression testing is to
show the prevalence of behavioral backward incompatibilities, and we believe
the above mentioned limitations do not affect our conclusion.

Second, when studying incompatibility-related bugs, we search the bug repos-
itories with keywords such as “update”. It should be noted that bugs related
to incompatibilities do not have very obvious keywords, such as “deadlock” for
concurrency bugs. In particular, some backward-incompatibility related bugs
may stay in the software for a long time, and the client developers may not
realize the root cause of the bug even after it is fixed. Thus, our selected bugs
may be biased to those bugs that are easily found to be relevant to backward
incompatibilities.

Third, in our study on bug reports, we largely depend on the comments and
code commits of developers to determine whether a bug is fixed or not, and the
relevant code locations. It is possible that developers make mistakes and thus
affect the precision of our results.

Fourth, in our study of documentation status, we carefully checked release
notes, migration guides, and API JavaDocs. However, it is still possible that
library developers are documenting the behavioral changes elsewhere, such as in
bug repositories. Thus, we may miss some documented backward incompatibili-
ties. However, we believe that the places that we check are also the places client
developers may refer to. If the behavioral changes is documented somewhere
hard to find, it is still not well documented.

Threats to Validity The major threats to internal validity of our study
is the potential errors and mistakes in the process of building software and
performing regression testing, studying the bugs, and doing the statistics. To
reduce this threat, we carefully wrote all the tools we used, and checked the
results for correctness. The major threats to external validity is that, our con-
clusion may hold for only Java software libraries, and the libraries under study.
Furthermore, our conclusion may hold for only the 144 bugs studied. To reduce
this threat, we chose the most popular and thus representative Java software
libraries, as well as randomly chose the bugs to be studied.

5 Related Works

The major research topics that are related to our research are: studies on the
stability of software libraries, summarization of library changes, and migration
for library evolution.

18

5.1 Studies on the Evolution of Software Libraries

Researchers have noticed that software libraries are evolving frequently for a
long time, so a number of studies have been conducted on the evolution of
software libraries. Raemaekers et al. [21] proposed a measurement of software-
library stability which considers API method difference and code difference, and
studied the stability of 140 industrial Java systems based on the measurement.
McDonnell et al. [16] studied the stability of Android APIs (in terms of added
and removed classes and methods), and the time lag between the release of API
changes and the corresponding adaptation at the client software side. Espinha et
al. [7] interviewed 6 web client software developers and conducted an empirical
study on four widely used web services to understand their API evolution trends,
including the frequency of API changes, and the time given client developers
to upgrade to the new version of services. Bavota et al. [3, 4], studied the
evolution of software dependency upgrades in the apache software ecosystem.
The authors analyzes the factors that affect developers’ decision on software
library dependency upgrades and the impact of the upgrades. The existing
research efforts mainly focus on signature-level API changes (Raemaekers et al.’s
work considers the amount of code difference on top of API signature changes) to
measure API changes and stability. By contrast, our study focuses on behavioral
changes of software libraries, which are more difficult to be detected and may
cause more severe consequences.

There have also been a number of research efforts on the impact of software-
library to client software. Linares-Vsquez et al. [13] further studied the relation-
ship between change proneness of APIs methods and the successfulness of client
software that uses those API methods in Android software ecosystem. Bavota et
al. [5] further extends the work with more detailed experimental results. These
research efforts shows that backward incompatibilities have much effect on the
successfulness of client software, and thus motivate the study in our paper.

5.2 Summarizing Changes of Software Libraries

There have also been research efforts trying to summarize changes between two
consecutive versions of a software library. On the signature level, Wu et al. [23]
proposed AUCA, an auditor for API changes, that reports a large variety of
signature-level changes of APIs. Moreno et al. [18] proposed ARENA, an au-
tomatic tool to summarize software-library changes and generate release notes.
Specifically, ARENA analyzes source code changes of a software library and
generate a natural-language-based notes summarizing library changes changes
including additions and removals of files, classes, methods, changes of method
signatures, etc.

On the behavior level, summarizing the behavior of a method from its source
code has been a hot topic for a long time in the area of compositional program
analysis [8, 22]. There are also some research efforts on change-aware behavior
summarization, that summarize the behavioral changes between two versions
of a method. Specifically, McCamant and Ernst [15, 14] proposed to represent

19

behavior API methods with program invariants generated with Daikon, and to
represent behavioral changes as violations of program invariants. More recently,
Person et al. [19, 20] proposed differential symbolic execution to summarize as
symbolic expressions of inputs the semantic difference between two versions of a
method. Lahiri et. al [12] proposed SymDiff, a tool that leverages a modularized
approach to check semantic equivalence of different code versions, and calculate
program paths that can reveal code behavioral difference.

These proposed techniques can handle general behavioral changes of meth-
ods, while our study actually shows that a large portion of real-world behav-
ioral incompatibilities are related to user interface, execution environment, etc.,
which raise new challenges for these techniques. Also, our study shows that be-
havioral incompatibilities follow some patterns, so that more specific and more
scalable techniques may be developed accordingly.

5.3 Support for Library Migration

Another research topic closely relevant to our work is support for library mi-
gration, including the mapping of APIs between two consecutive versions of a
software library and inference of usage patterns of newly added APIs. Godfrey
and Zou [9] proposed a number of heuristics based on text similarity, call de-
pendency, and other code metrics, to infer evolution rules of software libraries.
Later on, S. Kim et al. [11] further improved their approach to achieve fully au-
tomation. M. Kim et al. [10] inspected existing framework evolution process to
gather a number name-changing patterns and used these patterns to infer rules
of framework evolution. Dagenais and Robillard [6] proposed SemDiff, which
infers rules of framework evolution via analyzing and mining the code changes
in the software library itself. Wu et al. developed AURA [24], which further in-
volves multiple rounds of iteration applying call-dependency and text-similarity
based heuristics on the code of software library itself. Most recently, Meng et
al. [17] proposed Hima, which further enhances AURA by involving information
from comments of code commits between two consecutive versions of software
libraries.

It should be noted that, almost all existing support for library migration are
at the API signature level (i.e., providing replacement API methods to make
client code compile). While these approach can largely enhance the productivity
of library migration, they may not be able to handle API methods with behav-
ioral changes, which can go through compilation and become runtime errors in
the later stages of software life cycle.

6 Future Works

In the future, we plan to further explore the following research directions.
First of all, our study focuses on Java software libraries, so our conclusion

may not be generalized to other programming languages. Therefore, we plan

to conduct similar studies on software libraries written in other languages, es-

20

pecially non-object-oriented languages to confirm or extend our conclusion. We
also plan to inspect more backward-incompatibility-related bug reports.

Second, as we mentioned in Section 2, regression testing with developers’ test
suite may find only a small portion behavioral incompatibilities, and thus results
in a very course underestimation of the number of behavioral incompatibilities.
In the future, we plan to leverage automatic test generation and more advanced
automatic test oracles to better detect behavioral backward incompatibilities.

Third, due to the difference in the popularity of API methods, the potential
influence of backward incompatibilities varies. A backward incompatibility is
more important if the relevant API method is used (directly or indirectly) more
widely. We plan to further study the influence of behavioral incompatibilities
and signature incompatibilities.

Fourth, in our study, we find a number of challenges and research oppor-
tunities including behavioral incompatibilities related to reflections, call backs,
GUI, and execution environments, better documentation of behavioral incom-
patibilities, etc. We plan to address some of these challenges in the future.

7 Conclusion

In this paper, we present a study on behavioral backward incompatibilities based
on regression testing of 68 version pairs of 15 Java software libraries, and inspec-
tion of 144 real world bugs. From our study, we find that behavioral backward
incompatibilities are prevalent among Java software libraries, and caused most
of real-world backward-incompatibility bugs. Furthermore, most of the behav-
ioral backward incompatibilities are expected by developers of software libraries,
but are rarely well documented. We also categorize behavioral backward incom-
patibilities according to the incompatible behaviors and invocation conditions,
and discussed the challenges of using existing techniques to detect and fix them.

References

[1] Criticism of windows vista. https://play.google.com/store/apps/
details?id=com.sohu. inputmethod.sogou&hl=en. Accessed: 2014-08-
30.

[2] Sougou. https://play.google.com/store/apps/details?id=com.
sohu. inputmethod.sogou&hl=en. Accessed: 2014-08-30.

[3] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. The
evolution of project inter-dependencies in a software ecosystem: The case

21

[12]

[13]

of apache. In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 280289, 2013.

G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. How
the apache community upgrades dependencies: an evolutionary study. Em-
pirical Software Engineering, pages 1-43, 2014.

G. Bavota, M. Linares-Vasquez, C. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. The impact of api change- and fault-
proneness on the user ratings of android apps. Software Engineering, IEEE
Transactions on, (99):1-1, 2014.

B. Dagenais and M. P. Robillard. Recommending adaptive changes for
framework evolution. In Proc. ICSE, pages 481-490, 2008.

T. Espinha, A. Zaidman, and H.-G. Gross. Web api growing pains: Stories
from client developers and their code. In Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolu-
tion Week - IEEE Conference on, pages 84-93, 2014.

P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. Composi-
tional may-must program analysis: Unleashing the power of alternation.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 43-56, 2010.

M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entities. IEEE TSE, 31(2):166-181, February 2005.

M. Kim, D. Notkin, and D. Grossman. Automatic inference of structural
changes for matching across program versions. In Proc. ICSFE, pages 333~
343, 2007.

S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions change their
names: Automatic detection of origin relationships. In Proc. WCRE, pages
143-152, 2005.

S. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Reblo. Symdiff: A
language-agnostic semantic diff tool for imperative programs. In Computer
Aided Verification, pages 712-717, 2012.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: A threat
to the success of android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 477487,
2013.

S. McCamant and M. Ernst. Early identification of incompatibilities in
multi-component upgrades. In Furopean Conference on Object-Oriented
Programming, pages 440-464, 2004.

22

[15]

[16]

[18]

S. McCamant and M. D. Ernst. Predicting problems caused by component
upgrades. In Proceedings of the 9th European Software Engineering Con-
ference Held Jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 287-296, 2003.

T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability
and adoption in the android ecosystem. In Proceedings of the 2013 IEEFE
International Conference on Software Maintenance, ICSM ’13, pages 70—
79, 2013.

S. Meng, X. Wang, L. Zhang, and H. Mei. A history-based matching
approach to identification of framework evolution. In Proceedings of the

34th International Conference on Software Engineering, ICSE ’12, pages
353-363, Piscataway, NJ, USA, 2012. IEEE Press.

L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Can-
fora. Automatic generation of release notes. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2014, pages 484-495, 2014.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu. Differential sym-
bolic execution. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 226237, 2008.

S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental sym-
bolic execution. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 504-515, 2011.

S. Raemaekers, A. van Deursen, and J. Visser. Measuring software li-
brary stability through historical version analysis. In Software Mainte-
nance (ICSM), 2012 28th IEEE International Conference on, pages 378
387, 2012.

J. Whaley and M. Rinard. Compositional pointer and escape analysis for
java programs. In Proceedings of the 14th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications,
pages 187-206, 1999.

W. Wu, B. Adams, Y.-G. Gueheneuc, and G. Antoniol. Acua: Api change
and usage auditor. In Source Code Analysis and Manipulation (SCAM),
2014 IEEFE 14th International Working Conference on, pages 89-94, 2014.

W. Wu, Y. Guéhéneuc, G. Antoniol, and M. Kim. AURA: A hybrid ap-
proach to identify framework evolution. In Proc. ICSE, pages 325-334,
2010.

23

