CS5363 Programming Languages and Compilers: Mid-Sample
Name (Please Print): __________________
PART I Multiple Choice (8*5 points = 40 points)
Only one answer can be the correct answer.
1. Which statement is CORRECT on the difference between compilers and interpreters?
A. Compilers may support more flexible dynamic language features.
B. Programs written in interpreter-based languages tend to have less bugs than programs written compilation-based languages.
C. Compilers are not used after the software is distributed to the users
D. Programs written in compilation-based languages are easier to debug
Answer: C

A: Interpreters usually support more flexible dynamic language features.

B: Compilation-based programs usually have less bugs because compilation detects bugs

D: The difficulty to debug code is similar for compilation-based or interpreter-based languages.

2. Which of the following is a sentence that WILL NOT cause ambiguity in the

derivation of the following grammar?

Grammar:

S→ (L)

L→L, L

L→S

S→x

A. (x, (x, x))

B. (x, x, x)

C. ((x, x, x))

D. ((x), (x), (x))
Answer:  A

The ambiguity comes from L->L,L. When you have two or more commas in a sequence, the grammar can generate either the first or second comma. For example, L->L,L->x,L->x,L,L->x,x,x and L->L,L->L,L,L->x,L,L->x,x,x

3. Which of the following is CORRECT about two buffer strategy?

A. Two buffer strategy is a popular implementation mechanics in the parsing phase of compilers.
B. Two buffer strategy is designed to enhance the efficiency of lexical analysis

C. The compiler is going to load the second buffer when the read pointer goes to the end of the first buffer.

D. The larger the size of the two buffers, the more benefit you can get from two buffer strategy. 
Answer: B

A: two buffer strategy is for lexical analysis phase

C: the compiler loads the second buffer when the read pointer goes to the beginning of the first buffer. 

D: It depends on the size of program.

…
PART II Short Answer Questions (60 points)
1. Please create an automaton based token model for positive numbers with / without decimal point, such as 13, 0, 0.3, 12.7, …

[image: image1.emf]0-9

1-9

0

.

.

0-9

0-9


(2) Given the grammar below, please first perform left refactoring. For the refactored grammar, calculate the first set, follow set of all non-terminals, and the LL(1) parsing table. Figure out whether the grammar is LL(1).
(16 points)
Grammar:

E-> BD

D-> +BD | ε
B-> T^B | T
T -> int
Answer:

After left factoring:

E-> BD

D-> +BD | ε
B-> TX
X-> ^B | ε 
T -> int

First (E) = {int}
First (D) = {+, ε}

First (B) = {int}

First (X) = {^, ε}

First (T) = {int}
Follow (E) = {$}

Follow (D) = {$}

Follow (B) = {$, +}

Follow (X) = {$, +}

Follow (T) = {$, +, ^}

Parsing table:

	
	+
	^
	int
	$

	E
	
	
	E->BD
	

	D
	D-> +BD
	
	
	D-> ε

	B
	
	
	B->TX
	

	X
	X-> ε
	X-> ^B
	
	X-> ε

	T
	
	
	T->int
	


No conflict cells in the parsing table, so it is LL(1).

_1613330637.vsd
�

0-9


1-9


0


.


.


0-9


0-9



